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ON THE MOTION OF A CONTROLLED SYSTEM OF VARIABLE MASS* 

A.G. AZIZOV 

A mechanical system with servoconstraints whose motion is controlled by 
reactive forces is investigated. The law of variation of mass of the 
system ensuring the realization of the servoconstraints is determined, and 
the problem of stabilizing the motion with respect to a manifold defined 
by these constraints is studied. The method of investigation is based on 
the rules of combination of the constraints /l/ and the Chetayev's theory 
of parametric release /2/. 

The general theory of motion of a system with non-ideal constraints 
applied to problems with friction /l, 3/wasusedin/4/ to construct the 
equations of motion of a control system with constraints whose response 
were reactive forces. However, the systems /4/ in which the laws of 
variation of mass were known in advance, and all constraints effected by 
reactive forces were applied exactly over the whole period of motion, 
embrace only a narrow class of problems. A more general case is of 
interest, when only a part of the constrains rely on reactive forces, 
where the possible deviations of the motions from the servoconstraints are 
taken into account and the laws governing the variation of mass of the 
points are not known in advance and are found from the differential 
equations supplementing the equations of motion of the system. 

1. We consider a mechanical system of material points Mk (k = 1, 2,...,n) whose positions 
in the inertial frame of reference are given by their Cartesian coordinates ;r, (v = 1,2, . . ., 3n). 
Let the given forces Fk(Xv) belonging to class C, act on the points, and let their motion be 
constrained by the compatible and independent constraints which include the geometrical 
constraints 

f0c 6% 0 = O,, (for fz C,; a= 1, 2, . . ., a) (1.1) 

as well as the kinematic constraints which are, in general, non-linear 

'PR(ZW&.*)=O (q$ECli 8==1,2,...,4 (W 

The possible displacements allowed by the constraints will be determined by s+b 
independent relations /2/ 

and the manifold of admissible states of the system will be represented in the form 

Xv= av(g,, t)l zv'=&(~ir pj, t)(% E Cap b,ECr) (1.3) 

where qi (i = 1, 2,.. ., p) are independent Lagrangian coordinates and Rj (j = 1,2,...,r) are 
independent velocity parameters. The variations in the Cartesian coordinates can be expressed 
in terms of arbitrary quantities 6nl as follows: 

6x, = 
r ab, x F % 

j=l , 

We shall assume that the constraints will be divided, according to the method of their 
implementation, into constraints of the first kind /5/ and servoconstraints whose responses 
will be automatically regulated reactive forces produced by the points of the system. Let 
the first c constraints of (1.1) and the first d constraints of (1.2) be constraints of the 
first kind. Denoting by NI,(N,) the reaction forces of the constraintsofthe first kind and 
by @k(@,,) the reaction forces of the servoconstraints, we write the resulting responses 
Rk (I?,) as R,= NV+ %. Here the axiom of ideal constraints will be represented by the 
equation 
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valid for any possible displacements. The necessary and sufficient condition of this validity 
will be, that the condition /3/ 

R, = 

holds, where & and ~8 are the undetermined Lagrange multipliers. 

We will assume that the sum of elementary works by the constraint reaction forces over 

any possible displacement will be 

Vsl R&r,=r#O (1.4) 

and the constraints of the first kind are ideal. In this case the servoconstraints will not 

be ideal and it will be possible to use the rule of combined constraints to study the system. 

Indeed, taking into account initially only the servoconstraints of the system, we will 

write the expression for the manifold of admissible states in the form 

XV= A,(qj, t), G'_=&(Qj, PO, ') 

(A, E C,, B, E C,; j = 1, 2, . . ., m = p + c; o = 1, 2, . . ., 1 = r + d) 
(1.5) 

Under the above assumptions concerning the ideal nature of the constraints of the first 

kind, we obtain the following expression from (1.4): 

valid for any possible displacement, and the servoconstraint reaction force QI, can be 

expanded in a unique manner into the components Q)k" and @k’ such, that the left-hand side 

is equal to zero for Gn and the vectors @k' &t appear amongst the possible displacements. 

Moreover, we have 

where uO are certain coefficients of proportionality. 

The motion of the points of the system will be described by the equations 

and these should be supplemented by the constraint Eqs.cl.1) and (1.2) and the mass variation 

equations. 

We will derive the differential equations of the variation of mass by turning to the 
expression for the reaction force mk' v%' (k = 1, 2, . . ., n) produced by the point Mkof the 

system where mk' is the rate of loss of mass per second and Vr’ is the relative velocity 

of the ejected particles. The following relations hold: 

mk'Vkr=@ (k=&&...,n) 

and they yield the following system of differential equations for determining the rate of 

loss of mass of the points: 

mk’Vkr = - T/w (k=1,2,...,n) (1.8) 

where Vk' is the relative velocity of the ejected particles. 

Differentiating Eqs.(l.l) with respect to time twice and (1.2) once, and replacing 2," 
by their values from (1.71, we obtain a + b linear equations which enable us to determine 

the multipliers h, and & as functions of the coordinates G,, the velocities x,.*, the masses 

mk, the time t and the arbitrary parameters UC (a = 1, 2, . . *, I). Consequently we obtain 3n 
second-order Eqs.cl.7) and R first-order Eqs.ll.8) containing the parameters ur, u,, . . ., uI as 
the controlled quantities, for determining the motion of the points of the system and the law 

of variation of mass. 
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2. As we know /6/, the servoconstraints are represented by the invariant relations of 
the differential equations of motions obtained. When perturbations appear, violating the 
conditions of servoconstraints, the question arises concerning the need to take into account 
the fact that the system can be freed r and the solution of the problem on stabilizing the 
motions relative to the manifold determined by the servoconstraints. Taking into account this 
formulation of the problem and the equations of servoconstraints from systems (1.1) and (1.21, 
we will also consider the equations 

jcty(zV,t)=~ @=1,2, . . . . e=a--c ) 

rpa,p(z;,%+,t)==r, (p=l,2,...,f=b--d) 

(2.4) 

where 'IV and 5p are parameters characterizing the continuous release of the system from the 
geometrical and kinematic constraints. In the case of such a parametric release, we take the 
left-hand sides of the equations of servoconstraints, which can be calculated for the real 
motion /I/, as the deviations, and in place of (1.5) we can obtain the following expressions 
for the manifold of admissible states: 

When qY = 6, =%' = 0, we add Eqs.(l.S), determining the manifold of admissible states 
of the system which has not been freed. 

Adopting for Eqs.(Z.l) the definition of possible displacements for systems with parametric 
constraints /6/, we obtain the conditions 

enabling us to represent the variations in Cartesian coordinates in terms of the arbitrary 
quantities 8rc, as follows: 

Considering expression (1.4) and assuming that c 3_ d constraints of the first kind are 
ideal, we obtain Eq.(l.6) which holds fox any possible displacement. We can decompose, as 
before, the force of reaction of the servoconstraints (Pk into the components @k" and (Pkt, 
and 

(2.3) 

Replacing @,.' in (1.7) and (1.8) by their values from (2.3) and supplementing them with 
the equations of constraints, we obtain the multipliers h, and ~6 as functions of the coordinates 
x,,, the velocities z,.,', masses mk, time t and the arbitrary parameters u0 (a = 1, 2,...,1), and 
of the release parameters nV and &, and their derivatives Ilv', 5p.9 IV". 

Introducing the notation 

Itv'=J/y, 5P=Ycyrr 'Iy=?&, 

rl;'=VV, 5p'=Vt+p (4=e+j) 

we obtain the following system of equations: 

y’ = Ag f BY (2.4) 

fl = (a=Ze+f) 

where Ejand E, are unit submatrices of order j X f and e X e respectively. 
System (2.41, which describes the deviation of the motion from the servoconstraints, is 

fully controllable /t3/ and an equation of the form V = V(y)(V(O)= 0) can always be found for 
it, ensuring the stabilization of the zeroth-order solution of the equations 

Y * = Ay+ BY fvf, il (0) = Y@ (2.5) 
Considering now the equations of motion of the system together with the equations of 

variation of mass (l.S), associated equations of the contraints of the first kind from systems 
(1.1) and (1.2) and Eqs.(2.5), and taking into account (2.11, we obtain 3n equations of the 
second order in the coordinates, and n equations of the first order in the masses. 
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3. When constructing Eqs.(2.2), we disregarded c geometrical and d kinematic constraints 
of the first kind from systems (1.1) and (1.2). In order to include these constraints, we 
transform them to the variables defining the manifold (2.2) and assume that the resulting 
geometrical constraints can be solved for the variables qucl, ..,qm and the kinematic con- 
straints for the variables pr+l,...,pe. 

We obtain the following equations for the manifold of admissible states of such a system: 

S,=C&*(ni* ?lv,t) (&*ECg; i=1, 2, ****P) 13-f) 

Zv’=bv*(Qit rlrt Spy pjt qy.9 t) (b*ECl; i=$* 2s - * * 9 r, 

and the variations in Cartesian coordinates will be expressed in terms of the ordinary 
quantities &nj as follows: 

Let us multiply each equation of motion of the points of the system by 6x9, and add 
them together. Introducing the energy of accelerations of the system S, we will have 

(3.2) 

Differentiating (3.1) with respect to time, we obtain 

where repeated dots denote terms not containing the derivatives of the velocity parameters 

Pj. Transforming the expression (3.2) with the help of the identities ti&“/@pj’ = i?b,‘ii@ and 
taking into account the arbitrariness of the quantities 6nj, we obtain the following system 
of equations: 

where A'* is the energy of accelerations constructed using Eqs.(3.1). 
If we now pass, in Eqs.cl.8) and (3.3), from the Cartesian coordinates and their 

derivatives to the variables used to define Eqs.(3.1) and add to them Rqs.(2.51 and the kinematic 
relations 

Qi'=qi'(Pa* 'lvl $0, Pjt rlv.9 t, (qi'G Cl; 4 S= 19 2* * * * t P) 

which occur by virtue of the presence of kinematic contraints (1.2), we obtain a complete 
system of equations for determining the unknowns mk, pj, pi, yt (5 = 1, 2, . . . . n). i-Iere Eqs.cl.8) 
and (3.3) will contain arbitrary parameters =I* u,, . . ., Uf. 

4. We will consider, as an example, the problem given in /9, Sect.lO/, assuming that 
the points M=and MS have masses m, and tnz respectively and the non-holonomic constraints 
reduces to the condition 

31' (YZ - ?A) - Y,‘ (% - 31) = 0 (4.1) 

which means that the velocity of the point M, must be directed along the rod M,M,= 1. Assuming 
that the reactive force is produced by the point MI only and expression (4.1) corresponds to 
the servoconstraint, we construct the equations of motion of the system and the equations of 
variation of mass. 

Restricting ourselves initially to the case when the servoconstraint is satisfied 
exactly by the relations s%'= p(za-.zq), yl.= R(y.-Yyl)which satisfy identically the condition 
(4.11, we introduce the high speed parameter p and write the force of reaction of the servo- 
constraint in the form 

Q,* = B (YZ - Yl) i-u (G - 2111 @@, = IL (=1 - %) + s (yn - Yr) 

where p is the servoconstraint multiplier and u is an arbitrary parameter. Taking into account 
the geometrical constraint of this problem , regarded as a constraint of the first kind, we 
will represent the manifold of admissible velocities thus: 

2*' = rp cos 'p, 22' = 2 (P ees 'p - cp’ sin 9) (4.2) 
y,‘ = 2~ sin 'p, ya' = 1 (p sin q i_ vp’ 03s q) 

Writing out Eqs.(3.3), we obtain 
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(ml + m) (p’ + k sin cp) - m# = u 
q”+p(P’+kcoscp=O (k=g/Z) 

(4.3) 

The value of the multiplier of the servoconstraint will in this case be p= -m, @cp’+kcusrp), 
therefore using (1.8) we obtain 

ml' = - Z/V' [ml'(pcp'+ k co8 cp)*+ .+ (4.4) 

where V+ is the relative velocity of the ejected particles. 
Thus Eqs.(4.3) containing the arbitrary parameter u, describe the motion of the system 

along the manifold defined by the constraints, and the law of variation of mass governing this 
motion satisfies Eq.(4.4). 

Let us assume that the initial conditions of the system are incompatible with Eq.(4.1) 
and, that we require to solve the problem of stabilizing motions relative to the manifold in 
question. 

The expressions 
5 r 

2,' = zpcos cp + - Plsio cp ’ zp'=Z(~cos(P--'sincp)+~ 

5 YI' = 1~ sin v - zl eos q , y,.=I(psinrp+cp'cosm)--~~ 

transformed into Eqs.(4.2) when 5=0, satisfy the Chetayev's release algorithm. From the 
kinematic point of view the parameter 5 represents a quantity characterizing the deviation 
of the motion of the system from the seroconstraint (4.1). 

Writing the equations of motion in the form (3.3) and adding to them the equations 

5' = V (0, v (0) = 0, 5 (0) = EO 

with an asymptotically stable zero-order solution, we obtain the system 

(ml + ma) (p’ + k sin cp) - mrcp’* = 

u - q [2V (5) ctg 2T + w w cp + cw p)] 

(4.5) 

cp" +~cp'+kcosp = l-'[V (5) + h'ctg2ql 

Supplementing these equations with the equations of variation of mass 

ml’ = - l/V’fp* + u* 
(p = ml (l-2 IV (5) - 2cv'ctg 2rp1 - p(p’ - k cos @) 

(4.6) 

we obtain the complete system of differential equations 
become, as c- 0, (4.3) and (4.4) respectively, defining 
manifold. 
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